Formal geometric quantisation for proper actions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Quantization for Proper Actions

We first introduce an invariant index for G-equivariant elliptic differential operators on a locally compact manifold M admitting a proper cocompact action of a locally compact group G. It generalizes the Kawasaki index for orbifolds to the case of proper cocompact actions. Our invariant index is used to show that an analog of the Guillemin-Sternberg geometric quantization conjecture holds if M...

متن کامل

0 Ju n 20 08 GEOMETRIC QUANTIZATION FOR PROPER ACTIONS

We first introduce an invariant index for G-equivariant elliptic differential operators on a locally compact manifold M admitting a proper cocompact action of a locally compact group G. It generalizes the Kawasaki index for orbifolds to the case of proper cocompact actions. Our invariant index is used to show that an analog of the Guillemin-Sternberg geometric quantization conjecture holds if M...

متن کامل

A Geometric Description of Equivariant K-Homology for Proper Actions

LetG be a discrete group and letX be aG-finite, properG-CW-complex. We prove that Kasparov’s equivariant K-homology groups KK∗ (C0(X),C) are isomorphic to the geometric equivariant K-homology groups of X that are obtained by making the geometric K-homology theory of Baum and Douglas equivariant in the natural way. This reconciles the original and current formulations of the Baum-Connes conjectu...

متن کامل

A Poincaré Lemma in Geometric Quantisation

This article presents a Poincaré lemma for the Kostant complex, used to compute geometric quantisation, when the polarisation is given by a Lagrangian foliation defined by an integrable system with nondegenerate singularities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Homotopy and Related Structures

سال: 2015

ISSN: 2193-8407,1512-2891

DOI: 10.1007/s40062-015-0109-8